Download Prospectus


How can we select engineering materials?

In our previous article, we looked at elastic and magnetic hysteresis. In this article, we’re going to look at how we can select engineering materials.  In other articles, we have previously looked at the different materials and their properties.  However, it’s important that engineers understand how we can go about picking the correct material for our engineering application.

Material selection charts

These charts are a graphical way of representing material data.  As the majority of mechanical properties range of several orders of magnitude, the charts are produced with a logarithmic scale.

The image below shows an example chart for Young’s modulus versus density for certain material families, such as ceramics, wood, metals and so on:

, How can we select engineering materials?

On the Y-axis, you can see that the values for Young’s modulus are given in GPa.  With a logarithmic scale being used, a wide range of values from 0.01GPa (10MPa), i.e. very flexible materials, all the way through to 1000GPa (very stiff materials) can easily be shown.

On the x-axis we have material density, going from light materials through to heavy materials.  Each coloured ‘bubble’ represents a whole material family, so we can quickly see how different materials types measure.  For example, it is no surprise to see that wood and wood products are generally lower density (and therefore weight) than metals and alloys. 

Each ‘bubble’ can then be further split down to show the individual material properties within that classification. For example, the Young’s modulus vs density chart is now shown with metals and polymers expanded into more detail:

, How can we select engineering materials?

It’s worth noting how each specific material takes up a much smaller ‘bubble’, so now the chart starts to become much more useful for material selection purposes, and engineers can dive a lot deeper into selecting a specific material, for example copper rather than a generic ‘metal’.

Engineering designers have a challenging task in choosing the appropriate material for any given product.  It is common for them to have to consider many competing objectives and constraints at once – light and stiff, strong and cheap, tough and recyclable (or maybe all of these at once!).  Material selection in design is therefore a matter of assessing trade-offs between several competing requirements, and the material selection charts help to visualise these trade-offs, making it a lot easier for engineering designers to visualise how various materials might affect their design.  This makes it a lot easier to select an appropriate material overall.

Keep an eye out for our next articles looking at basic electrical parameters and how we calculate them.

Interested in our courses?

You can read more about our selection of accredited online mechanical and industrial engineering courses here.

Check out individual courses pages below:

Higher International Diploma in Mechanical Engineering

Higher International Certificate in Mechanical Engineering

Diploma in Mechanical Engineering

Diploma in Mechanical Technology

Higher International Diploma in Industrial Engineering

Higher International Certificate in Industrial Engineering

Diploma in Engineering Management

Diploma in Lean Manufacturing

Alternatively, you can view all our online engineering courses here.

Recent Posts

A Quick Guide to Thermal Stress

A Quick Guide to Thermal Stress Thermal expansion and the resulting thermal stress are key concepts in engineering and physics. They describe how materials expand or contract when exposed to temperature changes. Understanding these principles is essential for designing structures and systems that can withstand environmental fluctuations without failure. What is Thermal Expansion? When materials […]

How to Calculate Shear Stress

Introduction to Shear Force and Shear Stress Shear force and shear stress are critical concepts in mechanics and materials science, often encountered in structural engineering and manufacturing. Shear Force refers to the internal force in a material that acts parallel to its cross-section. It is measured in Newtons (N). Shear force arises when two opposing […]

Kirchhoff’s current and voltage laws

Kirchhoff’s current and voltage laws In our last article, we looked at the principles and operation of a d.c motor.  In this article, we’re going to investigate Kirchoff’s current and voltage laws, as well as how to apply them to engineering problems. Kirchoff’s law of  current Kirchoff’s law of current states that the algebraic sum […]