Download Prospectus


What is a cantilever beam and how can we calculate its deflection?

You may have read our previous article about beams and their deflection.  The article talked about deflection in general – what it is and how can it be determined.  Now we’re going to dive a little deeper and focus on cantilever beams and their deflection.

What is a cantilever beam?

Cantilever beams are beams that are constrained at one end and free at the other.  At the fixed, or restrained, end of the beam the slope and deflection must be zero.  Deflection increases as we move towards the free end, with maximum deflection at the tip.

Some examples of cantilever beams in construction are:

example of a cantilever beam
example of a cantilever beam
example of a cantilever beam

Cantilever beams can be either end-loaded or uniformly loaded.  There’s a great video here giving us details on the slope and deflection along the beam.

End-loaded cantilever beams

Here the load is applied at a single point on the beam.  The first diagram below shows a cantilever beam with a deflected shape.  The second diagram shows a cantilever beam carrying a point load at its free end.

cantilever beam with a deflected shape
a cantilever beam carrying a point load at its free end

Uniformly loaded cantilever beams

These types of beams have the force acting uniformly along its length.  An example of a cantilever beam carrying uniformly distributed load (UDL) would be a balcony.

example of a cantilever carrying UDL

The diagram below shows a schematic representation of this type of cantilever beam.

schematic representation of a cantilever beam

Standard data table for cantilever beam deflection and slope.

The most practical and fastest way to calculate the deflection and slope of a beam is to use standard tables.  There are quite a few beam deflection tables that can be used.

For a cantilever beam subjected to a single type of loading, for example a point or concentrated load, uniformly distributed load, deflection and slope can be determined using the formulae in the table below:

standard table to calculate beam deflection

Interested in our courses?

Interested in civil engineering? Find out more about all the civil engineering courses we have available by clicking here.

Diploma in Civil Engineering

Diploma in Renewable Energy

Diploma in Sustainable Construction

Diploma in Structural Engineering

Diploma in Building and Construction Engineering

Higher International Certificate in Civil Engineering

Higher International Diploma in Civil Engineering 

Alternatively, you can view all our online engineering courses here.

Recent Posts

A Quick Guide to Thermal Stress

A Quick Guide to Thermal Stress Thermal expansion and the resulting thermal stress are key concepts in engineering and physics. They describe how materials expand or contract when exposed to temperature changes. Understanding these principles is essential for designing structures and systems that can withstand environmental fluctuations without failure. What is Thermal Expansion? When materials […]

How to Calculate Shear Stress

Introduction to Shear Force and Shear Stress Shear force and shear stress are critical concepts in mechanics and materials science, often encountered in structural engineering and manufacturing. Shear Force refers to the internal force in a material that acts parallel to its cross-section. It is measured in Newtons (N). Shear force arises when two opposing […]

Kirchhoff’s current and voltage laws

Kirchhoff’s current and voltage laws In our last article, we looked at the principles and operation of a d.c motor.  In this article, we’re going to investigate Kirchoff’s current and voltage laws, as well as how to apply them to engineering problems. Kirchoff’s law of  current Kirchoff’s law of current states that the algebraic sum […]